Physique Générale I

Examen écrit du 18 janvier 2019, 8:15 – 11:15

L'examen comporte 4 exercices, numérotés de 1 à 4.

L'énoncé contient 5 pages numérotées.

Seul document autorisé :

une fiche de notes manuscrites sur l'équivalent d'une feuille A4 recto verso.

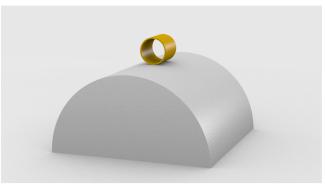
Calculatrice interdite.

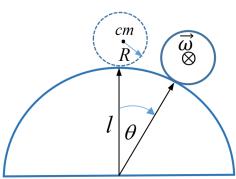
Tout doit être rédigé au stylo.

Inscrivez votre nom sur chacun des feuillets et au début de chaque exercice sur l'énoncé.

Un exercice par feuillet (page double A4 pliée) seulement.

Les réponses finales à chaque question doivent être reportées sur l'énoncé dans les cases prévues à cet effet.


Les justifications détaillées et propres doivent être rendues sur les feuillets fournis.


Ne pas retourner cette feuille avant le début de l'épreuve

Nom :	Prénom :	Section :	No :
-------	----------	-----------	------

Exercice 1: Cylindre creux qui roule puis décolle (1,4 point)

Un cylindre creux de masse m, de longueur L, de rayon R, et d'épaisseur négligeable repose sur un support dont la forme est un demi-cylindre de rayon l, comme indiqué sur le schéma ci-dessous. Les deux axes de symétrie des cylindres sont parallèles. Le cylindre creux est initialement immobile au sommet du support ($\theta = 0$), puis il se met à rouler sans glisser le long du support. La position du cylindre creux est repérée par l'angle θ , tel qu'indiqué sur la figure ci-dessous. On néglige les frottements de l'air. On note g l'accélération de la pesanteur.

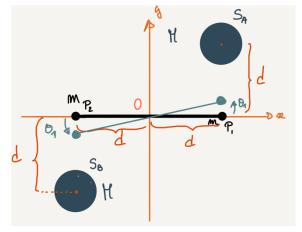
d)	Calculez l'angle critique de décollage $ heta_{\mathcal{C}}$.
c)	Quel est le type de trajectoire du cylindre creux après avoir quitté le support ?
Le	cylindre creux roule sans glisser jusqu'à un angle critique $ heta_C$, puis il « décolle ». Il n'est alors plus en contact avec le support.
b)	Indiquez les forces qui s'exercent sur le cylindre creux. On prendra soin de préciser leur point d'application. Dessinez ce forces sur le schéma de droite, pour la position $\theta>0$.
a)	Démontrez que le moment d'inertie I_{cm} du cylindre creux pour une rotation autour de son axe de symétrie est $I_{cm}=mR^2$.

e) Déterminez l'équation différentielle du mouvement du cylindre creux selon θ , pour $\theta < \theta_{\mathcal{C}}$ (pendant qu' il roule sans glisser sur le support). Exprimez cette équation en fonction de R, l, et g.

f)	Si le cylindre creux glissait sans frottement (pas de rotation), l'angle critique de décollage θ_C serait-il plus grand ou plus petit ? Argumentez sans calcul.

Nom:	Prénom :	Section :	No :
Exercice 2: La balance de Caver	ndish (1,4 point)		
est constituée de deux points mate	strument permettant de déterminer expé ériels P_1 et P_2 de même masse m reliés pa e masse M , S_A et S_B , peuvent être placées vitation.	r une tige sans masse à un	fil, formant un pendule
Partie 1 : Étude du pendule de l	torsion.	\$ 8 P.	Vue de dessus
	par une tige sans masse de longueur utour de O dans le plan horizontal	fit (k,b) Pe M O O O	8 d d m
a) Calculez le moment d'inertie $I_{\mathcal{C}}$ l'axe (Oz)	du pendule de torsion par rapport à	τ.	~
$I_O =$			
- le fil exerce un moment é	rantes, κ et b , définies comme suit : astique dépendant de l'angle de déviation $\mathrm{d}u$ fil exercent le moment $\overrightarrow{\mathcal{M}}_0^f=-b\dot{ heta}\dot{e}_z$		$ heta ec{e}_z$,
O. Tomp	On écarte le pendule de sa position communiquer de vitesse angulaire. temps et on observe des oscillations contre).	On mesure l'angle de dé	viation en fonction du
b) Établissez l'équation différentie	elle du mouvement sur la variable $ heta$.		
c) Quelle est la pulsation propre d	u pendule de torsion ?		
Pulsation propre :			

e) On suppose l'amortissement très faible ($b \approx 0$) et on mesure T. Déterminez K en fonction de T, m et d.


Explicitez la pseudo-période et le facteur d'amortissement en fonction des données du problème.

κ =

 $\theta(t) =$

Partie 2 : Influence de la force de gravitation des 2 grosses sphères sur les deux masses ponctuelles

On amène les deux grosses sphères (S_A, S_B) de masse M, en regard des masses ponctuelles (P_1, P_2) à une distance d de l'axe Ox, et on laisse le pendule s'équilibrer avec l'angle de déviation θ_1 . On suppose l'angle θ_1 très faible $(\theta_1 \ll 1)$.

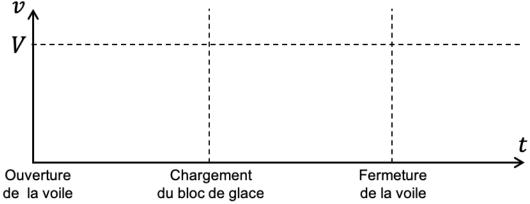
a) Exprimez (vectoriellement) le moment, par rapport à O sur le pendule, lié à la force de gravitation de S_A sur P_1 et de S_B sur P_2 .

$\mathcal{M}_{0,1}^{tot}$	=																								
07/110	o+ o	امنس	مما	 +\ I	 	 .	~+	1:4	λl	~ f	~ "	 4.	~ "	i	+-+	:	. ما	۰ ۵	 	D	۰.	4.	C	 . ח	

b) Exprimez (vectoriellement) le moment lié à la force de gravitation de S_A sur P_2 et de S_B sur P_1 .

$$\overrightarrow{\mathcal{M}}_{0,2}^{tot} =$$

c) Montrez que pour un calcul d'ordre de grandeur, on peut négliger $\|\overrightarrow{\mathcal{M}}_{0,2}^{tot}\|$ devant $\|\overrightarrow{\mathcal{M}}_{0,1}^{tot}\|$


d) Exprimez l'angle θ_1 à l'équilibre en fonction de ${\it G}$, ${\it M}$, ${\it m}$, ${\it d}$ et ${\it K}$.

 $\theta_1 =$

e) Déduisez l'expression de G en fonction de M, m, d, T et θ_1 , grandeurs qui sont connues ou facilement mesurables.

G =

Nom :		Prénom :	Section :	No :
Exercic	e 3 : Voyage de Mike Hor	n sur un traineau à voile (1,1 point)		
la banqu patins d des coe vent dan avec ur constan l'accélén	uise. Mike se déplace dans le traineau subissent une for ficients statique et dynames la voile correspond à une a coefficient de viscosité η ts durant le trajet. On note	Mike Horn qui voyage sur un traineau à voile sa même direction que le vent de vitesse V . Lorce de frottement sec avec la banquise, avoique μ_s et μ_d respectivement. La poussée force de frottement fluide en régime laminaire et un facteur de forme K . η , K et V so m la masse totale du traineau et de Mike, et a banquise est parfaitement horizontale. Le que sur la voile.	vec	Banquise
		repos. Au temps $t=0$, Mike ouvre la voile. Lune valeur V_{min} . Exprimez V_{min} en fonction o		· · · · · · · · · · · · · · · · · · ·
	$V_{min} =$			
		te ($V>V_{min}$), le traineau se met en mouvem v_{0l} . Exprimez v_{0l} en fonction des données du $ V $		certain temps, la vitesse du
	$v_{0l} =$			
	note $v(t)$ la vitesse du trai t tion de v_{0l}, m, K et η .	neau. Trouvez une équation différentielle su	ır v décrivant le m	ouvement du traineau, er
d) Expr	imez la vitesse du traineau e	en fonction du temps et des paramètres v_{0l} , r_{0l}	n,K et η .	
	v(t) =			
mass	se M posé sur la banquise. L v eau à la valeur v_{1l} . Exprime	esse s'est stabilisée à v_{0l}), Mike attrape et cha la vitesse du traineau chute brutalement à la lez v_1 et v_{1l} en fonction de v_{0l} , m , M , g , μ_d , K	valeur v_1 , puis elle f et f .	
	n, Mike ferme la voile pour s données du problème.	s'arrêter. Exprimez la distance d'arrêt L après	la fermeture de la	voile, en fonction de v_{1l} e
	L =			
		our décrire l'évolution de la vitesse du train itesses discutées dans les questions précéder		et (la vitesse du vent y es
	$v_{igwedge}$	į	į	

Nom:	Prénom :	Section :	No:
Exercice 4 : Vol vers la Stat	tion Spatiale Internationale (1,1 point)		
par une navette lancée par ur	nale est un satellite tournant autour de la T ne fusée. On appellera G la constante de gra ée, la navette de masse m est placée sur u ayon R_2 de la station spatiale.	avitation universelle et M la mas	se de la Terre.
a) Démontrez que la vitesse	d'un satellite sur une orbite circulaire est co	onstante.	
	a navette sur l'orbite circulaire \mathcal{C}_1 en foncti		
	nergie mécanique E_1 sur l'orbite \mathcal{C}_1 en fonc		
	bite \mathcal{C}_2 grâce à l'allumage d'un moteur.		
d) Calculer le travail W_{12} de ${\cal C}_2.$	la force de gravitation $ec{F}$ qui s'exerce sur l	a navette quand celle-ci passe o	de l'orbite \mathcal{C}_1 à l'orbite
$W_{12} =$			
indiqué en pointillé sur le sch	éma ci-dessous. $\begin{array}{c} Av_{B} & B \\ \hline \\ R_{1} \\ A \\ \hline \\ Av_{A} \end{array}$	Orbite de transfert	
Α.	de transfert. Exprimez la vitesse v_B de la na		e sa vitesse $v_{\!\scriptscriptstyle A}$ au point
	e l'énergie mécanique E_T sur l'orbite de tra		R_1 et R_2 .
	$v_1 + \Delta v_A$ qu'il faut communiquer à la navex exprimé en fonction de E_T , E_1 , et m .	ette pour passer de l'orbite cir	culaire \mathcal{C}_1 à l'orbite de
$v_A =$			
h) La variation de vitesse Δv_i	$_3$ de la navette en B est-elle positive ou nég	gative ? Justifiez votre réponse s	ans calcul.